我来我网
https://5come5.cn
您尚未
登录
注册
|
菠菜
|
软件站
|
音乐站
|
邮箱1
|
邮箱2
|
风格选择
|
更多 »
vista
鍙よ壊涔﹂
card
wind
绮夌孩濂抽儙
帮助
统计与排行
无图版
我来我网·5come5 Forum
»
学业有成
»
外语乐园
»
The Nobel Prize in Physiology or Medicine 2007
交 易
投 票
本页主题:
The Nobel Prize in Physiology or Medicine 2007
显示签名
|
打印
|
加为IE收藏
|
收藏主题
|
上一主题
|
下一主题
luwen
∷
性别:
∷
状态:
∷
头衔:
无我相
∷
等级:
人见人爱
∷
发贴:
4372
∷
威望:
0
∷
浮云:
1120
∷
在线等级:
∷
注册时间: 2006-09-14
∷
最后登陆: 2013-09-25
【
复制此帖地址
只看此人回复
】
5come5帮你背单词 [
iceberg
/'aisb
ə
:g/
n. 冰山,流冰
]
The Nobel Prize in Physiology or Medicine 2007
8 October 2007
The Nobel Assembly at Karolinska Institutethas today decided to award
The Nobel Prize in Physiology or Medicine for 2007 jointly to
Mario R. Capecchi,Martin J. EvansandOliver Smithies
for their discoveries of"principles for introducing specific gene modifications in mice by the use of embryonic stem cells"
Summary
This year's Nobel Laureates have made a series of ground-breaking discoveries concerning embryonic stem cells and DNA recombination in mammals. Their discoveries led to the creation of an immensely powerful technology referred to asgene targeting in mice. It is now being applied to virtually all areas of biomedicine – from basic research to the development of new therapies.
Gene targeting is often used to inactivate single genes. Such gene "knockout" experiments have elucidated the roles of numerous genes in embryonic development, adult physiology, aging and disease. To date, more than ten thousand mouse genes (approximately half of the genes in the mammalian genome) have been knocked out. Ongoing international efforts will make "knockout mice" for all genes available within the near future.
With gene targeting it is now possible to produce almost any type of DNA modification in the mouse genome, allowing scientists to establish the roles of individual genes in health and disease. Gene targeting has already produced more than five hundred different mouse models of human disorders, including cardiovascular and neuro-degenerative diseases, diabetes and cancer.
Modification of genes by homologous recombination
Information about the development and function of our bodies throughout life is carried within the DNA. Our DNA is packaged in chromosomes, which occur in pairs – one inherited from the father and one from the mother. Exchange of DNA sequences within such chromosome pairs increases genetic variation in the population and occurs by a process calledhomologous recombination.This process is conserved throughout evolution and was demonstrated in bacteria more than 50 years ago by the 1958 Nobel LaureateJoshua Lederberg.
Mario Capecchi and Oliver Smithies both had the vision that homologous recombination could be used to specifically modify genes in mammalian cells and they worked consistently towards this goal.
Capecchi demonstrated that homologous recombination could take place between introduced DNA and the chromosomes in mammalian cells. He showed that defective genes could be repaired by homologous recombination with the incoming DNA. Smithies initially tried to repair mutated genes in human cells. He thought that certain inherited blood diseases could be treated by correcting the disease-causing mutations in bone marrow stem cells. In these attempts Smithies discovered that endogenous genes could be targeted irrespective of their activity. This suggested that all genes may be accessible to modification by homologous recombination.
Embryonic stem cells – vehicles to the mouse germ line
The cell types initially studied by Capecchi and Smithies could not be used to create gene-targeted animals. This required another type of cell, one which could give rise to germ cells. Only then could the DNA modifications be inherited.
Martin Evans had worked with mouse embryonal carcinoma (EC) cells, which although they came from tumors could give rise to almost any cell type. He had the vision to use EC cells as vehicles to introduce genetic material into the mouse germ line. His attempts were initially unsuccessful because EC cells carried abnormal chromosomes and could not therefore contribute to germ cell formation. Looking for alternatives Evans discovered that chromosomally normal cell cultures could be established directly from early mouse embryos. These cells are now referred to asembryonic stem (ES) cells.
The next step was to show that ES cells could contribute to the germ line (see Figure). Embryos from one mouse strain were injected with ES cells from another mouse strain. Thesemosaicembryos (i.e. composed of cells from both strains) were then carried to term by surrogate mothers. The mosaic offspring was subsequently mated, and the presence of ES cell-derived genes detected in the pups. These genes would now be inherited according to Mendel’s laws.
Evans now began to modify the ES cells genetically and for this purpose chose retroviruses, which integrate their genes into the chromosomes. He demonstrated transfer of such retroviral DNA from ES cells, through mosaic mice, into the mouse germ line. Evans had used the ES cells to generate mice that carried new genetic material.
Two ideas come together – homologous recombination in ES cells
By 1986 all the pieces were at hand to begin generating the first gene targeted ES cells. Capecchi and Smithies had demonstrated that genes could be targeted by homologous recombination in cultured cells, and Evans had contributed the necessary vehicle to the mouse germ line – the ES-cells. The next step was to combine the two.
For their initial experiments both Smithies and Capecchi chose a gene (hprt) that was easily identified. This gene is involved in a rare inherited human disease (Lesch-Nyhan syndrome). Capecchi refined the strategies for targeting genes and developed a new method (positive-negative selection, see Figure) that could be generally applied.
Birth of the knockout mouse – the beginning of a new era in genetics
The first reports in which homologous recombination in ES cells was used to generate gene-targeted mice were published in [屏蔽]. Since then, the number of reported knockout mouse strains has risen exponentially. Gene targeting has developed into a highly versatile technology. It is now possible to introduce mutations that can be activated at specific time points, or in specific cells or organs, both during development and in the adult animal.
Gene targeting is used to study health and disease
Almost every aspect of mammalian physiology can be studied by gene targeting. We have consequently witnessed an explosion of research activities applying the technology. Gene targeting has now been used by so many research groups and in so many contexts that it is impossible to make a brief summary of the results. Some of the later contributions of this year's Nobel Laureates are presented below.
Gene targeting has helped us understand the roles of many hundreds of genes in mammalian fetal development. Capecchis research has uncovered the roles of genes involved in mammalian organ development and in the establishment of the body plan. His work has shed light on the causes of several human inborn malformations.
Evans applied gene targeting to develop mouse models for human diseases. He developed several models for the inherited human disease cystic fibrosis and has used these models to study disease mechanisms and to test the effects of gene therapy.
Smithies also used gene targeting to develop mouse models for inherited diseases such as cystic fibrosis and the blood disease thalassemia. He has also developed numerous mouse models for common human diseases such as hypertension and atherosclerosis.
In summary, gene targeting in mice has pervaded all fields of biomedicine. Its impact on the understanding of gene function and its benefits to mankind will continue to increase over many years to come.
Mario R. Capecchi, born 1937 in Italy, US citizen, PhD in Biophysics 1967, Harvard University, Cambridge, MA, USA. Howard Hughes Medical Institute Investigator and Distinguished Professor of Human Genetics and Biology at the University of Utah, Salt Lake City, UT, USA.
Sir Martin J. Evans, born 1941 in Great Britain, British citizen, PhD in Anatomy and Embryology 1969, University College, London, UK. Director of the School of Biosciences and Professor of Mammalian Genetics, Cardiff University, UK.
Oliver Smithies, born 1925 in Great Britain, US citizen, PhD in Biochemistry 1951, Oxford University, UK. Excellence Professor of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, NC, USA
Posted: 2007-10-10 13:27 |
[楼 主]
sophie
∷
性别:
∷
状态:
∷
等级:
品行端正
∷
发贴:
240
∷
威望:
0
∷
浮云:
1130
∷
在线等级:
∷
注册时间: 2007-09-24
∷
最后登陆: 2007-11-16
【
复制此帖地址
只看此人回复
】
5come5帮你背单词 [
finder
//
n. 发现者,探测器
]
看过中文版的,来看看英文的,呵呵
Posted: 2007-10-12 18:12 |
[1 楼]
快速跳至
|- 站务管理
|- 惩罚,奖励公布区
|- 会员咨询意见区
|- 申请区
|- 已批准申请区
|- 威望和荣誉会员推荐区
|- 5come5名人堂·Hall of Fame
>> 休闲娱乐
|- 灌水乐园 大杂烩
|- 精水区
|- 幽默天地
|- 开怀大笑(精华区)
|- 灵异空间
|- 运动新时空·菠菜交流
|- 动之风.漫之舞
|- 新货上架
|- 古董挖挖
|- 唯美贴图
|- 创意&美化&设计
|- 5COME5头像及签名档图片引用专区
|- 艺术摄影
|- 音乐咖啡屋
|- 音道乐经
>> 热点讨论
|- 工作交流
|- 求职信息
|- 就业精华区
|- 同城联谊
|- 留学专版
|- 情感物语
|- 情感物语精华区
|- 带走一片银杏叶
|- 精华区
|- 新闻直通车
|- 众志成城,抗震救灾
|- 衣食住行
|- 跳蚤市场
|- 旅游出行
>> 学术交流
|- 学业有成
|- 智力考场
|- 考研专版
|- 外语乐园
|- 考试·毕业设计
|- 电子设计·数学建模
|- 学生工作·社团交流·RX
|- 电脑技术
|- 电脑F.A.Q.
|- 软件交流
|- 硬件·数码
|- 程序员之家
|- Linux专区
|- 舞文弄墨
|- 历史&文化
|- 军临天下
|- 军事精华区
|- 财经频道
>> 游戏新干线[电子竞技俱乐部]
|- Blizz@rd游戏特区
|- WarCraft III
|- 魔兽区档案库
|- 魔兽争霸3博彩专区
|- StarCraft(new)
|- 暗黑专区
|- 休闲游戏区
|- PC GAME综合讨论区
|- 实况足球专区
|- Counter-Strike专区
|- TV GAME& 模拟器
|- 网络游戏
>> 资源交流
|- 恋影部落
|- 连续剧天地
|- 综艺开心档
|- 书香小筑
|- 小说发布
|- 资源交流
|- 综艺、体育、游戏资源发布
|- 音乐资源发布区
|- 电影电视剧发布区
|- 字幕园地
我来我网·5come5 Forum
»
外语乐园
Total 0.008529(s) query 5, Time now is:01-04 15:03, Gzip enabled
Powered by PHPWind v5.3, Localized by
5come5 Tech Team
,
黔ICP备16009856号